Use of Spatial Filters for Improved Detection of Glaucomatous Visual Field Progression

Yan Li1, Runjie Bill Shi1, 2, Willy Wong1, 2, Yvonne Buys1, Graham Trope1, Moshe Eizenman1

1. Department of Electrical & Computer Engineering; 2. Temerty Faculty of Medicine; 3. Institute of Biomedical Engineering; 4. Department of Ophthalmology & Vision Sciences

University of Toronto, Toronto, Ontario, Canada

Purpose

• Accurate detection of VF progression remains challenging due to the inherent test-retest variability in VF measurements.
• This research investigates the use of spatial correlation filters to reduce the influence of test variability on the detection of VF progression.
• A novel simulation method for longitudinal VF measurements was proposed to support the performance evaluation.

Methods: Simulation of Longitudinal VF

• Simulation provides the “ground-truth” status of VF progression and thus facilitates quantitative performance evaluations.
• 500 stable and 500 progressing VF sequences (15 tests/sequence, 6 months apart) were generated with controlled progression rates based on 500 real VF tests from 500 glaucoma patients (Figure 1).
• The statistical properties and baseline defect patterns of real VF tests were used to ensure the simulated data were similar to real fields.

Figure 1. A simulated VF sequence with moderate arcuate baseline defects and the mean deviation deteriorated at 0.5 dB/year.

Methods: VF Spatial Correlation Filter

• Glaucomatous damages typically manifest in localized areas at the optic disc.
• VF measurements at different locations are correlated by:
 1. Anatomical distance: the angular distance that the retinal nerve fiber layer bundles supporting two VF points enter the optic disc, in Garway-Heath [1]. VF test points with shorter anatomical distances exhibit higher correlations.
 2. Spatial distance: the Euclidean angular distance between points on the VF testing grid.
• VF spatial correlation model [2]:
 \[
 \text{corr}_{pq} = \begin{cases}
 \exp(-\frac{1}{2} \frac{\text{dis}_{pq}^2}{\delta_1^2} + \frac{\text{dis}_{pq}^2}{\delta_2^2}) & \text{If } p \text{ and } q \text{ are in the same hemifield} \\
 0 & \text{Otherwise}
 \end{cases}
 \]
 where \(\text{corr}_{pq}\) is the correlation between VF test points \(p\) and \(q\), \(\text{dis}_{pq}\) and \(\text{dis}_{pq}\) represent the difference of Garway-Heath angles and the Euclidean distance between \(p\) and \(q\), and \(\delta_1 = 6\), \(\delta_2 = 14\); see [2] for details.
• The filtered sensitivity at each test point equals to the weighted average of the sensitivities at all other points.
• The weights are determined by the correlation coefficients.

Results

• Time to detect 80% of progressing eyes with 95% specificity and the mean MD progression rate at 0.5 dB/year (unit: years)

<table>
<thead>
<tr>
<th>Method</th>
<th>Time to detect w/o filter (mean ± SD)</th>
<th>Time to detect w/ filter (mean ± SD)</th>
<th>T-test p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>4.10 ± 0.26</td>
<td>4.05 ± 0.22</td>
<td>0.579</td>
</tr>
<tr>
<td>Regional</td>
<td>4.05 ± 0.15</td>
<td>3.61 ± 0.18</td>
<td>0.001</td>
</tr>
<tr>
<td>Pointwise</td>
<td>3.90 ± 0.22</td>
<td>3.00 ± 0.21</td>
<td>0.001</td>
</tr>
</tbody>
</table>

• Detection agreements (Fleiss’s kappa) between three trend-based methods with the mean MD progression rate at 0.5 dB/year

<table>
<thead>
<tr>
<th>Year from baseline</th>
<th>Detection agreements w/o spatial filter (mean ± SD)</th>
<th>Detection agreements w/ spatial filter (mean ± SD)</th>
<th>T-test p-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.37 ± 0.03</td>
<td>0.55 ± 0.02</td>
<td>0.001</td>
</tr>
<tr>
<td>3</td>
<td>0.65 ± 0.03</td>
<td>0.73 ± 0.01</td>
<td>0.001</td>
</tr>
<tr>
<td>5</td>
<td>0.80 ± 0.01</td>
<td>0.85 ± 0.01</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Interpretation of agreement: Poor: \(k < 0.2\), Fair: \(0.21 < k \leq 0.4\), Moderate: \(0.41 < k \leq 0.6\), Good: \(0.61 < k \leq 0.8\), Almost perfect: \(0.81 \leq k \leq 1.0\)

Conclusions

• The spatial filter that uses anatomical and spatial distances of VF test points improves the time to detect 80% of VF progression for pointwise and regional trends analysis, whereas the time-to-detect for the global trend method remained the same.
• The VF spatial filter can improve the detection agreements between three trend-based methods at different follow-up time points, hence can be used as a validation tool to verify the clinical VF progression analysis results.

Figure 2. A simulated VF sequence with MD deteriorated at 0.3 dB/year.

The spatial filter can smooth localized noise while not affecting the MD values.