Residual retinal fluid following intravitreal anti-VEGF treatment for neovascular age-related macular degeneration: a systematic review and meta-analysis

Nikhil S. Patil MD(C),¹ Andrew Mihalache BMSC(C),² Arjan S. Dhoot BMSc MD(C),³ Marko M. Popovic MD MPH(C),⁴ Rajeev H. Muni MD MSc FRCSC,^{4,5} Peter J. Kertes MD CM FRCSC^{4,6*}

¹Michael DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada; ²Faculty of Science, University of Western Ontario, London, Ontario, Canada; ³Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; ⁴Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada; ⁵Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, Toronto, Ontario, Canada; ⁶John and Liz Tory Eye Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada

Purpose

- The relationship between the presence of residual subretinal fluid (SRF) and residual intraretinal fluid (IRF) with visual acuity following anti-vascular endothelial growth factor (VEGF) treatment is not well understood.
- The objective of this meta-analysis is to analyze the association of residual retinal fluid, SRF, and IRF on visual acuity following anti-VEGF treatment for neovascular age-related degeneration macular (nAMD).

Methods

- A systematic literature search was performed from January 2005 to August 2021 on Ovid MEDLINE, EMBASE, and the Cochrane Library.
- Peer-reviewed articles reporting on visual acuity at last study observation stratified by the presence or absence of any residual SRF, IRF, and/or any retinal fluid after intravitreal injection of bevacizumab, ranibizumab, aflibercept, or brolucizumab in patients with nAMD were included.
- Studies that reported on other anti-VEGF agents, in fewer than 10 findings eyes, or were non-comparative, were excluded.
- Primary outcomes were BCVA at last study observation, change in BCVA from baseline, and retinal thickness at last study observation.
- Random-effects meta-analysis was conducted.

- analysis.
- eyes).
- GRADE=low, 7 studies, n=2114 eyes).

		SRF	No SRF			
Study or Subgroup	Mean	SD	Total	Mean	SD	1
Chatziralli 2016	65.4	19.3	129	62.8	16.7	
Dervenis 2016	61	18	42	52.5	26.5	
Holekamp 2021	69.39	19.49	163	62.26	17.94	
Khanani 2015	65.1	16.5	9	62.6	12	
Ohji 2021	61.81	15.46	51	63.1	16.86	
Saenz-de-viteri 2021	65.279	16.743	82	63.7	17.4	

Total (95% CI) 476 Heterogeneity: Tau² = 6.51; Chi² = 10.02, df = 5 (P = 0.07); l² = 50% Test for overall effect: Z = 1.99 (P = 0.05)

Results

• 11 studies and 3092 eyes were included in our

• At last study observation, the BCVA of eyes with residual SRF was better than eyes with no SRF (WMD=3.1 letters, 95% CI=[0.05,6.18], p=.05, GRADE=low certainty of evidence, 6 studies, n=1931

• The BCVA of eyes with residual IRF at last study observation was worse than eyes with no IRF (WMD=-8.2 letters, 95% CI=[-11.79,-4.50], p<.001,

• In a leave-one-out sensitivity analysis, residual SRF was no longer associated with a better BCVA at last study observation relative to no residual SRF when Chatziralli et al. (p=.12), Dervenis et al. (p=.09), Holekamp et al. (p=.20), Khanani et al. (P=.07), or Saenz de Viteri et al. (p=.07) were excluded.

Figure 1. BCVA at final follow-up for eyes with residual SRF.

	IRF			No IRF				Mean Difference	Mean
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Ran
Chatziralli 2016	59	18	156	65.9	16.8	291	21.5%	-6.90 [-10.32, -3.48]	-
Dervenis 2016	56.5	22.5	32	63	14.5	30	9.7%	-6.50 [-15.86, 2.86]	
Holekamp 2021	58.91	21.77	246	65.32	16.67	649	22.5%	-6.41 [-9.42, -3.40]	
Khanani 2015	69.5	9.9	4	62.2	15.4	12	6.0%	7.30 [-5.74, 20.34]	
Ohji 2021	48.15	18.53	16	63.9	15.97	224	9.7%	-15.75 [-25.07, -6.43]	
Saenz-de-viteri 2021	58.771	18.691	63	65.6	16.5	207	17.4%	-6.83 [-11.96, -1.70]	
Wickremasinghe 2014	43	22.5	48	60.5	18.5	136	13.3%	-17.50 [-24.58, -10.42]	-
Total (95% CI)			565			1549	100.0%	-8.15 [-11.79, -4.50]	•
Heterogeneity: Tau ² = 13	.07; Chi ^z :	= 16.35, 0	df = 6 (F	P = 0.01); I^z = 6 3	3%		2	
Test for overall effect: Z = 4.38 (P < 0.0001)								-20 -10 Favours No IF	

Figure 2. BCVA at final follow-up for eyes with residual) IRF.

Discussion

- The presence of residual SRF was associated with slightly better BCVA at last study observation, however, there was no significant difference between these two groups on leave-one-out sensitivity analysis and subgroup analysis based on study design.
- The presence of residual IRF was associated with substantially worse BCVA at last study observation and less improvement of BCVA from baseline.
- Our conclusions are limited by data observational studies, heterogeneity, and a low certainty of evidence.
- · While these findings support tolerance of residual SRF when treating nAMD, future clinical trials would be needed to confirm the association of residual SRF on BCVA outcomes.

Conflicts of Interest

N.P: None Declared, A.M: None Declared, A.H: None Declared, M.P: PSI Foundation, P.K: Bayer, Roche, Novartis, ArcticDx, R.M: Bayer, Novartis

