Biallelic Loss of Function Mutations in PYGM Cause **Presumed Non-Syndromic Macular Dystrophy**

Rowaida Hussein^{1,2}, Erika Tavares², Kashif Ahmed², Elise Héon^{2,3}, Ajoy Vincent^{2,3}

- ¹ Institute of Medical Science, University of Toronto
- ² Genetics and Genome Biology, SickKids Research Institute
- ³ Ophthalmology and Vision Sciences, University of Toronto

Introduction

Hereditary Macular Dystrophy (HMD) Subretinal

- HMD leads to degeneration of the central retina resulting in irreversible vision loss
- It is sometimes reported in association with McArdle Disease, a glycogen storage disorder resulting from mutations in glycogen phosphorylase (GP)
- > GP, encoded by the *PYGM* gene, breaks down stored glycogen into glucose-1-P monomers for use in glycolysis
- Retina expresses two isoforms of GP, PYGB and PYGM

Aim

What is the link between HMD and McArdle Disease?

Methods

Whole genome sequencing in family with HMD to identify causative mutation(s)

Immunohistochemistry of PYGM in human retina to determine which retinal layers *PYGM* is expressed in

Recruitment and examination of additional McArdle patients (n = 15) to look for any retinal changes

Results

Figure 2: Retinal images of McArdle patients McArdle patients show evidence of retinal changes, including yellow deposits, reticular changes, pigment hyperplasia and scalloped atrophy.

Conclusions

- Biallelic mutations in PYGM causes McArdle disease and HMD
- > HMD is prevalent in nearly half of examined McArdle patients, suggesting that this phenotype is either underdiagnosed or underrecognized

> WGS identified homozygous p.(Arg50*) mutations in *PYGM* > *PYGM* is expressed in the INL, ONL, OPL, GCL, and NFL (Figure 1) \succ 11 of 20 McArdle patients showed evidence of retinal changes (Figure 2)

Figure 1: PYGM expression in human retina

Nuclei were stained with antibodies specific to cone arrestin (purple), rhodopsin (green), PYGM (red) and DAPI (blue). IPL, inner plexiform layer; IS, inner segment; OS, outer segment. Images were captured at 40x magnification.

Figure 3: Proposed schematic of etiopathogenesis of retinopathy in **McArdle Disease**

Unlike healthy cones (right), dystrophic cones in McArdle disease (left) lack PYGM for glycogen breakdown, leading to progressive glycogen accumulation and glucose starvation.

> Our results indicate that patients with McArdle disease would benefit from periodic eye exams as part of their care