Therapeutic Potential of Extracellular Vesicles Derived from Human Placenta for the Treatment of Corneal Transplant Graft Rejection and Corneal Injuries
Stephanie Jarvi¹, Dennis K Lee², Hon S Leong², Ori Nevo², Stephan Ong Tone⁴
¹Temerty Faculty of Medicine, University of Toronto, ²Biological Sciences, Sunnybrook Health Sciences Centre, ³Department of Obstetrics and Gynecology, University of Toronto, ⁴Department of Ophthalmology and Vision Sciences, University of Toronto

BACKGROUND

In response to trauma, infection or chemical exposure, the corneal immune tolerance breaks down and the cornea undergoes neovascularization and scarring.

There is a lack of therapies to treat corneal neovascularization and scarring. Corneal transplant can restore vision in these eyes, but comes with the risk of transplant rejection.

Human leukocyte antigen G (HLA-G) is a molecule expressed in the cornea and involved in maintaining the cornea’s immune tolerance. HLA-G is also highly expressed in the placenta, and secreted in placental extracellular vesicles (EVs).

HLA-G gene therapy to the cornea has been shown to reduce fibrosis and neovascularization following chemical injury to rabbit corneas.¹

OBJECTIVES

- Isolate HLA-G+ EVs from placental tissues and cells
- Study the therapeutic potential of placenta tissue and cell-derived HLA-G+ EVs to
 - 1) reduce corneal transplant rejection
 - 2) reduce corneal scarring and neovascularization after chemical injury

METHODS

Sources of HLA-G:

- Conditioned media from placental explants
- Conditioned media from HTR-8 (immortalized trophoblast) cells

Enriching for HLA-G+ EVs:

Aqueous two-phase separation (ATPS):

1. A mixture of dextran (DEX) and polyethylene glycol (PEG) is added to the conditioned media
2. The mixture is centrifuged at 200 g for 15 minutes, which allows for separation into two phases (DEX phase and PEG phase) by density

RESULTS

HLA-G+ EVs are detected in the conditioned media from placental explants and HTR-8 cells using nanoscale flow cytometry (nFC)

Figure 1: HLA-G+ EVs from placentas at different gestational ages

Figure 2: HLA-G+ EVs from HTR-8 cells under various oxygen conditions

Figure 3: HLA-G+ EVs from placental explants are enriched 5.9X following ATPS

Figure 4: nFC shows HLA-G+ EV populations before (50 µL loaded) and after (5 µL loaded) ATPS.

CONCLUSION

- HLA-G is involved in the immune tolerance of the cornea and placenta
- We have detected HLA-G+ EVs in the conditioned media from placental villous explants and a trophoblast cell line, and have enriched for HLA-G+ EVs
- Our next steps involve evaluating corneal epithelial cell viability, fibrosis and neovascularization with topically applied HLA-G+ EVs

REFERENCES