SickKids

Ophthalmic involvement in PHACES syndrome: Prevalence, spectrum of anomalies and outcomes.[®] Sameh E. Soliman,^{1,3} Michael J. Wan,¹ Alexandra Pennal,² Elena Pope,² and Kamiar Mireskandari.¹

Background

- PHACES Syndrome includes Posterior fossa malformations, infantile Hemangiomas (IFH; 95% facial) with Arterial, Cardiac, Eye (6-7%) and Sternal anomalies.¹⁻²
- Major and minor diagnostic criteria were developed in 2009¹ and revised in 2016.² (Box 1)
- Ocular anomalies were reported to be 6% and 7% for posterior (major criterion) and anterior (minor criterion) segment anomalies, respectively.
- Ophthalmic involvement other than congenital anomalies was not addressed in the original or revised consensus statements with limited published data. Furthermore, there is no data on long-term follow up.³

Objectives

To present a large cohort of patients with PHACES highlighting prevalence, spectrum of anomalies and outcomes of ophthalmic involvement.

Design/Methods

- Retrospective non-comparative single institution observational case series of children with definite PHACES syndrome diagnosed and managed between 2000-2019 at a single tertiary referral center.
- Dermatology database was utilized to reduce selection bias.
- The study included 43 patients with Definite PHACES Syndrome.
- **Ophthalmic involvement:**
 - 1. Congenital ocular anomalies either diagnostic (major/minor criterion) or non-diagnostic including intraocular hemangioma. 2. Ophthalmic complications due to IFH.
- Severe Ophthalmic involvement: presence of an amblyogenic ptosis, proptosis, or misalignment capable of affecting visual potential and/or requiring surgery.
- **Primary outcomes:** Frequency and spectrum of ocular involvement.
- Secondary outcomes: Final visual and long-term ocular outcome.
- **Poor visual outcome:** final visual acuity worse than 20/200.

¹ Department of Ophthalmology & Vision Sciences, ²Department of Pediatric Dermatology; Hospital for Sick Kids), Toronto, Canada. ² Department of Ophthalmology, Alexandria University, Alexandria, Egypt.

Prevalence and spectrum of ophthalmic involvement:

- **Congenital anomalies:** (Figure 1 & 2)
 - Five children (11.6%) had diagnostic anomalies

• Four children (9.3%, one without diagnostic criteria) had non-diagnostic anomalies.

Fig. 2: Anterior segment anomalies

Results

Box 1: Diagnostic ocular criteria

Major criteria

Posterior segment anomaly Persistent fetal vasculature Retinal vascular anomalies Morning glory disc anomaly Optic nerve hypoplasia Peripapillary staphyloma

Minor criteria

Anterior segment anomaly Sclerocornea Cataract Coloboma Microphthalmia

Posterior segment anomalies:

a) & b) Peripapillary staphyloma. c) & d) Dysmorphic optic nerve head with gliotic changes that did not fit any major criteria, with retinal vascular anomalies in d. e) & f) Optic nerve hypoplasia with right pseudoedema of the optic nerve head. **Anterior Segment anomalies:**

g) persistent pupillary membrane and iris hemangioma, h) Persistent pupillary membrane and cataract and i) Peter's anomaly and cataract.

2. Periocular facial hemangioma:

- children

References

- . Garzon et al. PHACE Syndrome: Consensus-Derived Diagnosis and Care Recommendations. J Pediatr. 2016;178:24-33. anomalies, Cardiac defects and coarctation of the Aorta, Eye abnormalities, and Sternal abnormalities or ventral developmental defects) syndrome. J AAPOS. 2005;9(2):169-73.
- 3. Kronenberg et al. Ocular and systemic manifestations of PHACES (Posterior fossa malformations, Hemangiomas, Arterial

• Twenty-nine children (66%) had periocular IFH involving the eyelids (29), orbit (14), and/or conjunctiva (13). Bilateral in three

Severe ophthalmic involvement in 21/29 patients and included severe ptosis (9/21), proptosis (9/21), and strabismus (6/21). Long-term sequalae in 14/21 (67%) and included ptosis (11 mild, 2 severe), cicatricial entropion (2) and strabismus (8).

Seven children required corrective surgery (6 prior to 2011 and initially treated with systemic steroids). Furthermore, 4 of which had > 1 surgery (all initially treated with steroids).

Orbital/conjunctival periocular IFH involvement was significantly associated with long-term ophthalmic effects and need for surgery (67% and 40%, p=0.01 and 0.03 respectively)

Sixteen children (67%) developed amblyopia during IFH control. Of which, 13 responded well to amblyopia therapy.

Visual outcome: (At the final follow-up of mean 8.7 years)

26/29 eyes with ocular involvement achieved visual acuity better than 20/80. Of which, 21 had vision better than 20/40 and 5 had vision ranging from < 20/40 to 20/80.

Three children had poor vision, all had posterior segment anomaly.

Conclusions

Our institutional experience with PHACES syndrome shows 14% had congenital ocular anomalies and, 66% had ocular sequelae of IFH that were severe in 2/3 and required surgery in 1/3 of cases.

• Vision, follow-up frequency and anticipated outcomes are all important concerns for families that are usually raised at presentation. Having frequency figures would help guide their counseling.

A child without major ocular anomalies has normal visual potential but timely follow-up will help to ensure early detection and treatment of helps early reversal of amblyogenic stimuli.

Metry et al. Consensus Statement on Diagnostic Criteria for PHACE Syndrome. Pediatrics. 2009;124(5):1447-56.

Samuelov et al. Ocular Complications in PHACE Syndrome: A True Association or a Coincidence? J Pediatr. 2019;204:214-8