Deciphering the role of Neurog2-Ascl1 co-expression in the retina
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Abstract: During development, multipotent retinal progenitor cells (RPCs) undergo temporal identity transitions to give rise to neurons and glia in a defined temporal sequence. However, rather
than distinct waves of differentiation for each retinal cell type (i.e., ganglion, horizontal, amacrine, bipolar, cones, rods, Muller glia), retinal cells are born in overlapping temporal windows. The
temporal competence model states that RPCs are multipotent and stochastically give rise to all cell types with few exceptions (e.g., rod only clones, Olig2" RPCs biased towards rods and amacrine
cells, Ascll* RPCs give rise to all retinal cells except ganglion cells). Here we investigated whether the proneural transcription factors Neurog2 and Ascll, which specify neural cell fates in other
regions of the nervous system, also specify distinct cell fates in the retina. We found that a subset of embryonic RPCs express Neurog2 and Ascll either alone or in combination. To assess how these
RPCs differ, we sorted Neurog2/Ascll negative, single, and double positive retinal cells from embryonic day (E) E16.5 Neurog2mCherXl; 4scl]19FPKl transgenics and performed RNA-seq. PCA and
ANOVA-like analysis showed that Neurog2/Ascll double?, single* and negative cells are distinguished by eight distinct clusters defining the 7,145 differentially expressed genes. Neurog2/Ascll
double™ retinal cells preferentially express genes that are involved in the differentiation of early-born retinal cell types (e.g., amacrine cells and horizontal cells), such as Pax6, Neurodl, Neurod4 and
Onecutl. To examine the fate and function of Neurog2/Ascll double® RPCs during retinal development in vivo, we used a novel split-Cre system, in which Cre recombinase is only active in
Neurog2/Ascll double” cells. In split-Cre,; Rosa-zsGreen reporter mice, we discovered that Neurog2/Ascll double* RPCs exclusively give rise to amacrine cells. Moreover, amacrine cell number were
significantly reduced in split-Cre; Rosa-DTR ‘deletor’ mice. In summary, Neurog2/Ascll co-expresion defines a new distinct population of RPC that give rise to amacrine cells and supports the idea
that some RPCs are lineage restricted. Taken together, these data bring new insights into how amacrine cell fates are specified and reveal the existence of another lineage-restricted RPC pool.
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(A) Schematic lllustration of Neurog2/Ascl1 split-Cre strategy for
lineage tracing double positive cells and their progeny. (B) Lineage
trace of the double positive cells at e15, p0, p7 and p45 reveals that
double positive cells give rise to pax6 positive amacrine cells.
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Heatmap analysis for the RNAseq data showing Transcription
factors involved in RPCs and different cell types determination in
negative, Neurog2+, Ascl1+, and double+ retinal cells. Amacrine
specific genes, Pax6 and Neurod4 are highlighted with red boxes.

Ablation of the double positive cells in Split-Cre;Rosa-DTR (NADtr)
using diphtheria toxin injection from E12.5-E17.5 leads to a
significant reduction of the pax6 positive amacrine cells at E18.5.

Conclusions and Future directions

1. Retinal RPCs have four distinct pools: proneural negative, Ascl1+, Neurog2+ and Neurog2+Ascl1+

2. RNAseq analysis revealed that 4 populations differ from one another

3. Amacrine specific genes, Pax6 and NeuroD4, are highly expressed in Neurog2/Ascl1 double positive cells.

4. Lineage tracing analysis showed Neurog2/Ascl1 double positive cells give rise to Pax6+ amacrine cells

5. Ablation of double+ cells using split-Cre;Rosa-DTR mice with DT injection showed that loss of Neurog2/Ascl1

double+ cells result in a partial amacrine cell depletion.

6. Ongoing analysis aims to identify whether double positive RPCs generate specific amacrine cell types during

retinal development.
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